IC反应器把四个重要的工艺过程集中在同一个厌氧反应器内,这个工艺过程是:进液和混合-布水系统。废水经供料泵进入反应器内,并与从IC反应器上部返回的循环水有效混合,由此产生对进液的稀释和均质作用,提高系统的抗冲击能力。流化床反应室。通过布水器后,废水和颗粒污泥混合物在进水与循环水的共同推动下,迅速进入流化床室。废水和污泥之间产生强烈和有效的接触,这导致很高的污染物向生物物质(即颗粒污泥)的传质速率。在流化床反应室内,废水中的绝大部分可生物降解的污染物被转化为沼气。这些沼气在被一级三相分离器处收集并导入气体上升管,通过这个上升管部分泥水混合物被传送到反应器较上部的气液分离器,气体分离后从反应器导出。厌氧流化床反应器是一种高效的生物膜法处理方法。四川升流式厌氧罐种类
塞流式反应器也称推流式反应器,是一种长方形的非完全混合式反应器。高浓度悬浮固体发酵原料从一端进入,从另一端排出。消化器内沼气的产生可以为料液提供垂直的搅拌作用,料液在沼气池内无纵向混合,发酵后的料液借助于新鲜料液的推动作用而排走。工艺优点:不需要搅拌,池形结构简单,能耗低。适用于高SS废水的处理。运行方便,故障少,管理简单,稳定性好。工艺缺点:固体物易沉淀,影响反应器有效体积,使HRT和SRT降低,效率较低。因反应器面积、体积较大,反应器内难以保持一致的温度。需要固体和微生物的回流作为接种物。易产生厚的结壳,堵塞反应器。贵州塞流式厌氧罐视频UASB厌氧反应器的结构和工作原理决定了其在控制厌氧处理影响因素方面的技术特点。
工程调试人员在安装工程完成后,对污水处理项目进行调试,需求调查厌氧反应器的出水情况。影响厌氧反应器出水作用有哪些因素:水力负荷:水力负荷过低会导致许多分散污泥的过度成长,然后影响污泥的沉降功能,甚至导致污泥胀大;过大的水力负荷将导致颗粒污泥的剪切,并阻挠粘附和聚集。在厌氧罐发起初期,使用较小的水力负荷(0.05-0.1m3/m2h)使絮凝污泥相互粘结、集团化成长,有利于构成颗粒污泥的初生体。呈现一定量的污泥后,水力负荷增加到0.25m3/m2.h以上,构成颗粒污泥层。进步水力负荷过早,许多絮凝污泥过早筛选污泥负荷变大,影响厌氧反应器的安稳工作。
硫酸根废水对厌氧的影响:在厌氧环境中,硫酸盐还原菌会将硫酸盐还原为硫化氢,游离的硫化氢会对厌氧细菌中的产甲烷菌造成毒性。根据研究,当废水中游离的硫化氢浓度达到250mg/l时,厌氧颗粒污泥的活性下降约50%。同时,由于水中含有的游离硫化氢也可以被氧化剂氧化,从而表征为COD;所以,在化验数据时,会表现为厌氧出水的COD升高,去除效率下降。当然,厌氧反应中产生的硫化氢也会带来一些问题,例如厌氧装置区域有异味,厌氧系统中气水交界面腐蚀严重和沼气品质降低,这些我们会在后面的文章中单独讲解。厌氧反应器具有很大的高径比,占地面积非常小。
厌氧进水水质分析:废水的PH缓冲能力。另一个需要了解的是废水的pH缓冲能力,碱度是衡量缓冲能力的一个参数。另一个实用的检查废水缓冲能力的方法是向废水中加入相当于其COD浓度40%的乙酸(以COD浓度计),假如废水pH仍维持6.5以上,则其缓冲能力是没有问题的。假如pH在加乙酸后低于6.5,则说明废水的缓冲能力不是非常强,在操作中应小心控制,后一种情况下,在废水处理中产生的NH3,也能提高其缓冲能力。对于碱度特别小的废水,可以加Na2CO3提高其碱度。厌氧反应器超负荷运行,实际上就是负荷量超过了厌氧污泥中产甲烷菌的产甲烷能力。四川升流式厌氧罐种类
厌氧化物处理反应器是需要比较长的时间来完成,启动时间也很长。四川升流式厌氧罐种类
外循环厌氧反应器,是一种采用生物法处理废水的高速厌氧反应器。外循环厌氧反应器是在上流式厌氧污泥床的基础上发展起来的,采用外循环系统和颗粒污泥技术,是传统的膨胀颗粒污泥床反应器的改进型,属于高效厌氧反应器。充分利用了厌氧颗粒污泥技术,通过外循环为反应器提供充分的上升流速,保持颗粒污泥床的膨胀和反应器内部的混和,提高了反应器的处理效率。高浓度废水由布水系统从底部泵入,与反应器内的厌氧颗粒污泥充分混合,绝大部分有机物质被转化为沼气,气液分离模块将沼气、水和污泥实现良好分离,沼气由顶部进入沼气输送系统,废水由出水管流入后续处理系统,厌氧污泥回流至污泥床。四川升流式厌氧罐种类