您好,欢迎访问

商机详情 -

宿迁游离酸D-荧光素钾盐

来源: 发布时间:2022年07月01日

    是新型底物开发的一个早期实例。[1]2012NanoLuc®萤光素酶基于定向进化和新型底物开发方面的经验,研究人员从虾的萤光素酶改造设计出一种新型萤光素酶报告基因,即NanoLuc®萤光素酶。这是一种小分子(19kDa)单体酶,具有独特的底物,其灵敏度比已具备高灵敏度的萤火虫或海肾萤光素酶系统高约100倍。这种新型的报告基因有着范围广的应用前景,为进一步的技术开发奠定了基础。[1]2015NanoBRET™技术NanoLuc®的小体积和非常明亮的光输出是作为蛋白质标签的理想特征。这些特征还很适合作为生物发光共振能量转移(BRET)的供体。一项针对各种能量受体荧光基团的深入研究发现,红色光谱中的可选择性有助于消除与BRET测定相关的一些挑战。可将这些荧光基团添加到蛋白质配基等分子中以测量靶蛋白的结合,或与HaloTag®配基耦联以进行活细胞中蛋白质:蛋白质相互作用的检测。[1]2016NanoBiT®技术随着NanoLuc®的诞生,Promega的科学家努力将该报告基因改造为多亚基系统,即“NanoLuc®BinaryTechnology”或NanoBiT®。该系统由两部分组成:11个氨基酸的小标签和一个更大,更精细的NanoLuc®亚基,LgBiT。这两部分结构互补结合。D-荧光素钾盐测试适用范围包括哪些?宿迁游离酸D-荧光素钾盐

    SodiumSalt/D荧光素钠盐分子式:NaC11H7N2O3S2·H2O分子量:g/mol纯度:高级纯()应用:1)体外化学发光分析(invitro);2)***成像实验(invivo);3)高灵敏度ATP分析;步骤:Protocol1:InVitroBioluminescentAssays/体外生物发光检测1)用mL蒸馏水溶解gD-荧光素钠盐,配制成100mM的储存液(200×,浓度30mg/ml)。混匀后立即使用或分装后-20℃冻存。2)用组织培养基1∶200稀释储存液,配置工作液(终浓度150μg/mL)。3)去除培养细胞的培养基。4)待图像分析前,向细胞内添加1×荧光素工作液,然后进行图像分析。Protocol2:Invivoanalysis/***成像分析1)用无菌的PBS(w/oMg2+、Ca2+)配制D-荧光素钠盐工作液(15mg/mL),。一旦使用,保持冰冷且避光。D-荧光素(D-Luciferin)是荧光素酶(Luciferase)的常用底物,普遍应用于整个生物技术领域,尤其是体内***成像技术。其作用机制是在ATP和荧光素酶的作用下,荧光素(底物)能够被氧化发光(见下图)。当荧光素过量时,产生的光量子数与荧光素酶的浓度呈正相关性。将携带荧光素酶编码基因(Luc)的质粒转染入细胞后,导入研究动物如大、小鼠体内,之后注入荧光素,通过生物发光成像技术(BLI)来检测光强度变化。宿迁D-荧光素钾盐保质期南京翌科生物科技有限公司D-荧光素钾盐比较靠谱。

    我们将与LgBiT具有极强亲和作用的。HiBiT作为一种易于检测且具有高灵敏度的蛋白质标签,具有多种功能,例如当与基于CRIPSR的标签一起使用时,可以创建内源性报告基因模型。[1]2020Lumit™技术随着NanoBiT®技术的发展,人们认识到可以利用该系统通过结合免疫测定的组分检测多种分析物。由此产生的平台(现称为“Lumit”)提供了具有高灵敏度的简化免疫检测法。萤光素酶(英语:Luciferase)是自然界中能够产生生物发光的酶的统称,其中**有代表性的是一种学名为Photinuspyralis的萤火虫体内的萤光素酶。在相应化学反应中,荧光的产生是来自于萤光素的氧化,有些情况下反应体系中也包括三磷酸腺苷(ATP)。没有萤光素酶的情况下,萤光素与氧气反应的速率非常慢,而钙离子的存在常常可以进一步加速反应(与肌肉收缩的情况相似)。萤光生成反应通常分为以下两步:萤光素+ATP→萤光素化腺苷酸(luciferyladenylate)+PPi萤光素化腺苷酸+O2→氧萤光素+AMP+光这一反应非常节省能量,几乎所有输入反应的能量都被转化为光。与之形成鲜明对比的是人类使用的白炽灯,只有约10%的能量被转化为光,剩余的能量都变为热能而被浪费。萤光素或萤光素酶不是特定的分子。

    而是对于所有能够产生萤光的底物和其对应的酶的统称,虽然它们各不相同。不同的能够控制发光的生物体用不同的萤光素酶来催化不同的发光反应。**为人所知的发光生物是萤火虫,而其所采用不同的萤光素酶与其他发光生物如荧光菇(发光类脐菇,Omphalotusolearius)或许多海洋生物都不相同。在萤火虫中,发光反应所需的氧气是从被称为腹部气管(abdominaltrachea)的管道中输入。一些生物,如叩头虫,含有多种不同的萤光素酶,能够催化同一萤光素底物,而发出不同颜色的萤光。萤火虫有2000多种,而叩甲总科(包括萤火虫、叩头虫和相关昆虫)则有更多,因此它们的萤光素酶对于分子系统学研究很有用。如今研究得**透彻的萤光素酶是来自Photinini族萤火虫中的北美萤火虫(Photinuspyralis)。[1]萤光素酶可以在实验室中用基因工程的方法生成,并被用于多种不同的实验。萤光素酶的基因可以被合成并插入到生物体中或转染到细胞中。研究者利用基因工程已经使得小鼠、家蚕、马铃薯等一些生物可以合成萤光素酶。间接体外成像是一种强大的研究手段,可以对整个动物体中的细胞群落进行分析:将不同类型的细胞(骨髓干细胞、T细胞等)标记上(即表达)萤光素酶。D-荧光素钾盐长期保存条件是-20℃干燥避光。

    海肾萤光素酶因其底物要求和光输出方面的差异而可用于双重报告检测。Amplite™海肾荧光素酶报告基因测定Amplite™Renilla萤光素酶报告基因检测试剂盒提供了一种快速,灵敏的方法,可以使用专有的发光配方在基于细胞的检测中检海肾萤光素酶的活性,与海肾萤光素酶相互作用后,该试剂产生具有强光的产物。Amplite™海肾荧光素酶报告基因检测试剂盒特点:该测定法与标准细胞生长培养基兼容该试剂盒可以测量野生型和合成hRluc基因的原始表达或基因表达每个试剂盒均包含可以方便96孔和384孔板检测所必不可少的组分。荧光素酶是生物体内催化荧光素等物质氧化发光的一类酶的总称。自然界中,不同的发光生物拥有不同的荧光素酶,除了萤火虫荧光素酶(FireflyLuciferase)之外,还有发光细菌体内的细菌荧光素酶、发光海星的海星荧光素酶等。目前,人们对萤火虫荧光素酶的研究**多、应用***。一则关于手机上的细菌的新闻里,**在用ATP荧光检测仪检测手机表面的细菌。ATP是一种在动物、植物和细菌等活细胞中都存在的能量物质,由前述的反应式可知,ATP与荧光素、荧光素酶反应发出荧光。检测样品中的微生物越多,ATP就越多,荧光反应的光亮就越大。D-荧光素钾盐如何选择合作公司?宿迁D-荧光素钾盐保质期

南京翌科生物科技有限公司D-荧光素钾盐测试价格。宿迁游离酸D-荧光素钾盐

    因此只有在活细胞内才会产生长发生光现象,并且发光光强度与标记细胞的数目线性相关。结构与性能荧光素在氧气、ATP存在的条件下和荧光素酶发生反应,生成氧化荧光素(oxyluciferin),并产生长发生光现象。荧光素是腹腔注射或尾部静脉注射进入小鼠体内的,约一分钟就可以扩散到小鼠全身。荧光素的半衰期约三个小时,只有活细胞才能够持续表达荧光素酶。(1)荧光素不会影响动物的正常生理功能。(2)荧光素是280道尔顿的小分子,水溶性和脂溶性都非常好,很容易穿透细胞膜和血脑屏障。(3)荧光素在体内扩散速度快,可通过腹腔注射或尾部静脉注射进入动物体内。腹腔注射扩散较慢,持续发光长。荧光素腹腔注射老鼠后约1min后表达荧光素酶的细胞开始发光,10min后强度达到稳定的更高点,在更高点持续约20~30min后开始衰减,约3h后荧光素排除,发光全部消失,更佳检测时间是在注射后15~35min之间;若进行荧光素静脉注射,扩散快,但发光持续时间很短。科研人员根据大量的实验总结出荧光素的合适的用量是150mg/kg,即体重20克的小鼠需要3毫克的荧光素。(4)观察时间的间隔没有更短限制,只要观察的条件控制一致就可以。虽然底物在动物体内有一定的代谢过程。宿迁游离酸D-荧光素钾盐

标签: 细胞冻存液
推荐商机
热点推荐